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Abstract

We present measurements of the redshift-space three-point correlation function of galaxies in the Sloan Digital
Sky Survey (SDSS). For the first time, we analyze the dependence of this statistic on galaxy morphology, color,
and luminosity. In order to control systematics due to selection effects, we used r-band, volume-limited samples of
galaxies, constructed from magnitude-limited SDSS data (14.5 < r < 17.5), and further divided the samples into two
morphological types (early and late) or two color populations (red and blue). The three-point correlation function
of SDSS galaxies follows the hierarchical relation well, and the reduced three-point amplitudes in redshift-space are
almost scale-independent (Qz = 0.5 ∼ 1.0). In addition, their dependence on the morphology, color, and luminosity
is not statistically significant. Given the robust morphological, color, and luminosity dependences of the two-point
correlation function, this implies that galaxy biasing is complex on weakly non-linear to non-linear scales. We show
that a simple deterministic linear relation with the underlying mass could not explain our measurements on these
scales.
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1. Introduction

While the first-year WMAP (Wilkinson Microwave
Anisotropy Probe) data imply that the primordial density
fluctuations at z ≈ 1000 are virtually Gaussian (Komatsu et al.
2003), the present structure traced by galaxies shows signif-
icant non-Gaussianity. Such non-Gaussian features naturally
arise during the course of nonlinear gravitational evolution of
dark-matter density fields, the formation of luminous galaxies
and their subsequent evolution. Therefore, the degree and
nature of non-Gaussian signatures in the galaxy distribution
will provide important empirical constraints on the physics of
galaxy formation. The three-point correlation function (3PCF)
is the lowest-order unambiguous statistic to characterize such
non-Gaussianities.

The determination of the 3PCF of galaxies was pioneered by
Peebles and Groth (1975) using the Lick and Zwicky angular
catalogs of galaxies. Groth and Peebles (1977) found that the
∗ Present address: Department of Physics and Astrophysics, Nagoya

University, Nagoya 464-8602

3PCF ζ (r12, r23, r31) obeys the following hierarchical relation:

ζ (r12, r23, r31)
= Qr [ξ (r12)ξ (r23) + ξ (r23)ξ (r31) + ξ (r31)ξ (r12)], (1)

with Qr being a constant, and ξ (r) is the two-point correlation
function (2PCF). The value of Qr in real space de-projected
from these angular catalogues is 1.29±0.21 for r � 3h−1 Mpc.
Although subsequent analyses of redshift catalogs confirmed
the hierarchical relation, at least approximately, the value of Qz
(in redshift space) appears to be smaller, 0.5 ∼ 1 (Bean et al.
1983; Hale-Sutton et al. 1989; Jing, Börner 1998). Recently,
Jing and Börner (2003) have studied the luminosity depen-
dence of Q, and found a small, but significant, trend that
brighter galaxies tend to have a lower amplitude than fainter
ones.

N -body simulations and perturbative analysis generally
predict that the 3PCF should depart from the hierarchical
relation, especially on non-linear scales (Fry 1984; Suto,
Matsubara 1994; Jing, Börner 1997; Barriga, Gaztañaga
2002). However, Matsubara and Suto (1994) demonstrated that
redshift distortions substantially reduce the scale-dependence
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of Qr, resulting in Qz (Q in redshift space) being nearly
constant. Still, the amplitude of the Qz of galaxies is roughly
(50% ∼ 100%) smaller than predicted by N -body simulations.
The discrepancy is likely to be the effect of biasing. Recently,
Takada and Jain (2003) proposed a phenomenological model to
predict the 3PCF as a function of the galaxy properties, which
is based on the halo model. They argue that the color depen-
dence of Qr should be strong, i.e., the galaxy biasing severely
affects the 3PCFs.

There are several statistics that are closely related to the
3PCF, e.g., the reduced moments of counts in cells, such as
skewness and kurtosis (see Szapudi et al. 2002, in prepara-
tion). Another similar statistics is the bispectrum, which is
the Fourier counterpart of the 3PCF. Recently, Verde et al.
(2002) computed the bispectrum of the 2dF Galaxy Redshift
Survey, and concluded that the non-linear bias is consistent
with zero. The other complementary approach to quantify the
non-Gaussianity in the SDSS galaxies by means of topolog-
ical analysis (i.e., in terms of the Minkowski functionals) was
already conducted (Hoyle et al. 2002; Hikage et al. 2002,
2003). The above results are largely consistent with that
predicted from purely gravitational nonlinearity, while a weak
morphological difference is marginally detected (e.g., figure 13
in Hikage et al. 2003). Here, we report on the first results
of characterizing the non-Gaussianity in the SDSS galaxy
samples using 3PCFs in redshift space. In particular, we
consider the dependence of 3PCFs on the morphology, color,
and luminosity of galaxies by constructing volume-limited
samples so as to avoid possible systematics due to the selec-
tion function. A separate companion paper by Nichol et al.
(in preparation) focuses on a detailed comparison of 3PCFs
between the 2dF (Jing, Börner 2004) and the SDSS galaxies.

The paper is organized as follows: section 2 describes our
volume-limited sample of SDSS galaxies and the morphology
and color classification methods. The measurements of
3PCFs are detailed in section 3 with particular attention
given to their dependence on the morphology, color, and
luminosity of galaxies. Finally, we summarize the results in
section 4. We compare several different estimators of 2PCFs
and 3PCFs in Appendix. Throughout the data analysis, we
adopt the following set of cosmological parameters: the matter
density parameter, Ωm = 0.3; the dimensionless cosmolog-
ical constant, ΩΛ = 0.7; and the Hubble constant in units of
100kms−1 Mpc−1, h = 0.7.

2. Volume-Limited Samples of SDSS Galaxies

It is expected that galaxy clustering depends on the intrinsic
properties of the galaxy samples under consideration, including
their morphological types, colors, and luminosities. Therefore,
a straightforward analysis of magnitude-limited samples must
be interpreted with caution because several different effects
may be simultaneously involved. The magnitude-limited
sample of SDSS galaxies enables us to construct volume-
limited samples of different luminosities, morphologies, and
colors. This essentially removes the above difficulties while
keeping a statistically significant number of galaxies in each
sample.

Our present analysis is based on a subset of the SDSS galaxy

redshift data, ‘Large-scale Structure Sample 12’ (Blanton et al.
in preparation), which is larger by a factor of 1.8 than the
public Data Release One (Abazajian et al. 2003). This sample
includes galaxies with r-band magnitudes of between 14.5 and
17.77 after correction for Galactic reddening using the maps
of Schlegel, Finkbeiner, and Davis (1998). For more details,
the following can be consulted: York et al. (2000) for an
overview of the SDSS; Gunn et al. (1998) for a description
of the photometric camera; Stoughton et al. (2002) for photo-
metric analysis; Fukugita et al. (1996), Hogg et al. (2001),
and Smith et al. (2002) for the photometric system; Pier et al.
(2003) for the astrometric calibration; Eisenstein et al. (2001),
Strauss et al. (2002) for selection of the galaxy spectroscopic
samples; and Blanton et al. (2003) for spectroscopic tiling.

We construct two different kinds of volume-limited samples:
one is based on the morphological classification, and the other
is on the color of galaxies (figure 1 and table 1). Figure 2
illustrates the distribution of those galaxies in a volume-limited
sample.

Following Shimasaku et al. (2001), we classify the
morphology of galaxies according to the (inverse) concen-
tration index (ci), which denotes the ratio of the half-light
Petrosian radius to the 90%-light Petrosian radius. Specifically,
we define galaxies with ci ≤ ci,c as early-types, and those with
ci ≥ ci,c as late-types. The critical value ci,c = 0.35 is adopted
for galaxies with r < 16.0. Figure 3 shows the complete-
ness and contamination of this classification scheme. Around
ci ∼ 0.35 the completeness reaches 80% and the contamination
goes below 20%. The classification based on ci is affected by
the fact that the image quality of SDSS galaxies with r > 16.0
starts to be degraded due to the seeing. In order to empiri-
cally compensate for the effect, we slightly change the critical
value: ci,c = 0.359 for 16.0 < r ≤ 16.5 and ci,c = 0.372 for
16.5 < r ≤ 17.0. Those values are chosen so that the number
ratio of early- to late-types remains the same in the three
different magnitude ranges: 14.0 < r ≤ 16.0, 16.0 < r ≤ 16.5,
and 16.5 < r ≤ 17.0. We do not classify the morphology of
galaxies with r > 17.0.

On the other hand, the classification of galaxies according
to their colors does not require such a good image quality as
the ci classification. Thus, we can make use of galaxies down
to r = 17.5, leading to an improved statistical significance.
Figure 4 shows the distribution of g − r for volume-limited

Table 1. Volume-limited samples of SDSS galaxies; 14.5 < r < 17.0
for the early/late classification and 14.5 < r < 17.5 for color classifica-
tion.

Mr − 5logh z early late

−22 to −21 0.065–0.11 5881 3897
−21 to −20 0.042–0.075 5115 5975
−20 to −19 0.027–0.049 1626 3965

Mr − 5logh z red blue

−22 to −21 0.065–0.14 7949 8329
−21 to −20 0.042–0.093 8930 8155
−20 to −19 0.027–0.061 3706 3829
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Fig. 1. Redshift–absolute magnitude relation for volume-limited
samples of galaxies with 14.5 < r < 17.0.

Fig. 2. Distribution of galaxies in the volume-limited samples
(14.5 < r < 17.0; see table 1 and figure 1).

galaxies corresponding to the lower part of table 1. Clearly, the
colors are strongly correlated with the luminosity, and several
different versions of color-selected samples are possible. Since
our goal is to see if galaxy clustering is dependent on the
colors in a complementary manner to the previous morpholog-
ical classification, we divided each volume-limited sample into
three subsamples that roughly have equal numbers of galaxies.
More precisely, we defined red (blue) galaxies as g− r > 0.78,
> 0.75, and > 0.72 (g − r < 0.69, < 0.63, and < 0.55) for
−22 < Mr − 5 logh < −21, −21 < Mr − 5 logh < −20, and
−20 < Mr − 5 log h < −19, respectively. Here, g and r are

Fig. 3. Completeness of morphological classification according to the
inverse concentration parameter.

Fig. 4. Histograms of the color distribution for three volume-limited
galaxy samples (table 1). The bin of histogram is ∆(g − r) = 0.025.
The dotted vertical lines in each panel indicate the color thresholds that
divide galaxies in three different color subsamples.

k-corrected magnitudes. These thresholds are indicated in the
vertical lines in figure 4. Figure 5 illustrates the relations
between our two classification schemes.

3. Measurements and Results

3.1. Counting Triplets

In the present analysis, we directly computed the number of
triplets to estimate the 3PCFs ζ (s12, s23, s31) in redshift space.
In this way, we properly take account of the complicated survey
volume boundary. To be more specific, we distributed NR
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Fig. 5. Relation between the colors and the inverse concentration
parameters of galaxies. The horizontal dotted lines correspond to the
vertical dotted lines in figure 4.

random particles over the survey volume of a given sample of
ND galaxies, following the selection function of the latter (we
used NR = 25ND,all, where ND,all is the number of all galaxies
in each luminosity bin). Then, the 3PCFs were computed from
the following estimator (Szapudi, Szalay 1998):

ζ (s12, s23, s31)

=
DDD(s12, s23, s31)
RRR(s12, s23, s31)

− 3
DDR(s12, s23, s31)
RRR(s12, s23, s31)

+ 3
DRR(s12, s23, s31)
RRR(s12, s23, s31)

− 1, (2)

where DDD, DDR, DRR, and RRR are the number of corre-
sponding triplets consisting of galaxies and random particles,
and are normalized by ND(ND − 1)(ND − 2)/6, ND(ND − 1)
×NR/2, NDNR(NR−1)/2, and NR(NR−1)(NR−2)/6, respec-
tively. The above estimator is close to optimal, because it is
constructed to provide accurate edge effect corrections. We
decided to use the Szapudi and Szalay estimator, since we
found that it converges the true 3PCF slightly more rapidly
than the estimator of Jing and Börner (1998) with the given
number of random particles (see Appendix for details). We also
estimated the redshift space 2PCF with the analogous estimator
(Landy, Szalay 1993), and defined the normalized amplitude of
3PCFs as

Qz (s12, s23, s31)

≡ ζ (s12, s23, s31)
ξ (s12)ξ (s23) + ξ (s23)ξ (s31) + ξ (s31)ξ (s12)

. (3)

Two different parameterizations of triangular shape are
conventionally used in this field. One is

s12 = s, s23 = us, s31 = (u + v)s, (4)

where s12 ≤ s23 ≤ s31 is assumed (thus u ≥ 1 and 0 ≤ v < 1).
The other is

Fig. 6. Parameters to define the shape of triangles.

s12 = s, s23 = qs, s31 = s
√

1 + q2 − 2q cosθ, (5)

where s12 ≤ s23 is assumed (thus, q ≥ 1, but s31 may be smaller
than either of the other two; see figure 6). Note that according
to the second parameterization, one triangle is counted in three
different bins in (s, q, θ ). Although the first parameteriza-
tion is more traditional in the real data analysis, we adopt the
second, which is widely used in theoretical predictions. More
specifically, we choose 8 equally-spaced logarithmic bins in
0.4h−1 Mpc ≤ s < 10.0h−1 Mpc and 5 equally-spaced linear
bins both in 1 ≤ q < 5 and in 0 < θ < π . Since the number of
triplets of s < 1.0h−1 Mpc is very small (typically DDD � 50),
we plot the 3PCFs only for s > 1.0h−1 Mpc (where we have
more than 100 DDD counts) in what follows. Also, the errors
quoted below are evaluated from the 16 jack-knife re-sampling
(see e.g., Lupton 1993).

3.2. Equilateral Triangles

We ignore any possible dependence on the triangular shape
for the moment, and first consider 3PCFs for equilateral
triangles in detail. For this purpose, we first directly evaluate
the lengths of three sides of triplets. If those sides fall in the
same bin among 8 equally-spaced logarithmic bins between
0.4h−1 Mpc and 10.0h−1 Mpc, we define the triplets as being
equilateral triangles. Figures 7, 8, and 9 show Qz over
1h−1 Mpc <s < 10h−1 Mpc. The overall conclusion is that Qz
is almost scale-independent and ranges between 0.5 and 1.0,
and no systematic dependence is noticeable on the luminosity,
morphology, and color.

Previous simulations and theoretical models (Suto 1993;
Matsubara, Suto 1994; Matsubara 1994; Takada, Jain 2003)
indicate that Q decreases with the scale in both real and redshift
spaces. Observationally, Jing and Börner (2003) suggested that
Qz of the 2dF galaxies also decreases as scale. Neither trend
is clear in the results. This might be partly due to the different
velocity dispersion of the galaxies in the two samples. Jing,
Mo, and Börner (1998) reported that the early spirals (Sa, Sab,
Sb) have a significantly smaller Q than the other types, which
is qualitatively consistent with the present results.
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Fig. 7. Luminosity dependence of the normalized amplitude of
three-point correlation functions classified according to the morpholo-
gies of galaxies. Only equilateral triangles are considered. Different
symbols correspond to different luminosities: −22 < Mr − 5 log h <

−21 by solid triangles, −21 < Mr − 5 log h < −20 by open circles,
and −20 < Mr − 5 logh < −19 by crosses. Top: all galaxies, Middle:
early-type galaxies, Bottom: late-type galaxies.

Fig. 8. Same as figure 7, but different symbols correspond to
different morphologies; all galaxies in open circles, early-type
galaxies in solid triangles, and late-type galaxies in crosses.
Top: −22 < Mr −5logh <−21, Middle: −21 < Mr −5logh <−20,
Bottom: −20 < Mr − 5 logh < −19.

Fig. 9. Same as figure 8, but for classification according to the colors
of galaxies. All galaxies by open circles, red galaxies by solid triangles,
and blue galaxies by crosses.

3.3. Relation to Biasing of the Two-Point Correlation
Function

The statement that the values of Qz are insensitive to
the intrinsic properties of galaxies may sound somewhat
misleading. The reduced three-point correlation amplitude is
normalized by the square of the 2PCFs for the corresponding
galaxies. This implies that the (unreduced) 3PCF depends
on the galaxy properties, since 2PCFs are known to show a
clear dependence on the luminosity, color, and morphology of
galaxies (e.g., Lahav, Suto 2003 for a recent review). In order
to further demonstrate the expected dependence in the current
samples , we compute the biasing parameters estimated from
the 2PCFs,

bz,i(s) ≡
√

ξz,i(s)
ξz,ΛCDM(s)

, (6)

where the index i runs over each sample of galaxies with
different morphologies, colors, and luminosities. The predic-
tions of the mass 2PCFs in redshift space, ξz,ΛCDM(s), in the
Λ Cold Dark Matter model are computed by properly taking
account of the light-cone effect over the corresponding redshift
range (Hamana et al. 2001). In doing so, we adopt the fluctu-
ation amplitude σ8 = 0.9 and the one-dimensional peculiar
pairwise velocity dispersion of 800 km s−1 in addition to our
fiducial set of cosmological parameters.

As an illustrative example, consider a simple bias model in
which the galaxy density field, δg,i , for the i-th population of
galaxies is given by

δg,i = bg,i(1)δmass + bg,i(2)δ
2
mass. (7)

If both bg,i(1) and bg,i(2) are constant and the mass density field
δmass � 1, equation (3) implies that
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Fig. 10. Inverse of the biasing parameters of the two-point correlation
functions plotted in the same way as in figure 7.

Fig. 11. Inverse of biasing parameters of the two-point correlation
functions plotted in the same way as in figure 8.

Qg,i =
1

bg,i(1)
Qmass +

bg,i(2)

b2
g,i(1)

. (8)

Thus, the linear bias model (bg,i(2) = 0) simply implies that
Qg,i is inversely proportional to bg,i(1). While this simple
model may not be accurately applicable on the scales of our
results, it is instructive to plot 1/bg,i deduced from the 2PCF
of galaxies with different luminosities and morphologies. The
results are shown in figures 10, 11, and 12. A linear bias
model would predict that the ratio of Qz of early-types and

Fig. 12. Inverse of biasing parameters of the two-point correlation
functions plotted in the same way as in figure 9.

late-types is Qz,early/Qz,late = blate/bearly ≈ 0.8, and similarly
that Qz,red/Qz,blue = bblue/bred ≈ 0.5. Neither figure 8 nor 9,
however, shows such systematic trends within our ∼20 percent
measurement accuracy. In a sense, the biasing in the 3PCFs
seems to compensate for the difference of Qg purely due to that
in the 2PCFs. Such a behavior is unlikely to be explained by
any simple model inspired by the perturbative expansion, like
equation (7). Rather, it indeed points to a kind of regularity or
universality of the clustering hierarchy behind galaxy forma-
tion and evolution processes. At least we can conclude that
the galaxy biasing is more complex than the simple determin-
istic and linear model. More precise measurements of 3PCFs,
and even higher order statistics with future SDSS datasets
would indeed be valuable to gain more specific insights into
the empirical biasing model.

3.4. Shape Dependence

Next consider the dependence of the 3PCFs on the trian-
gular shape. For this purpose, we consider the volume-limited
samples classified according to the colors (r < 17.5) because
they have a greater number of galaxies. Figure 13 shows Qz
for all, red, and blue galaxies with −21 < Mr − 5logh < −20
separately. Those plots indicate a weak θ -dependence expected
from the previous perturbation theory and N -body simula-
tions (e.g., Barriga, Gaztañaga 2002; Takada, Jain 2003). The
θ -dependence is weaker on nonlinear scales (s < 1h−1 Mpc),
and becomes noticeable on larger scales. While the amplitudes
of Qz are much smaller than, and the color dependence seems
very different from the corresponding prediction (figure 17 in
Takada, Jain 2003), they adopt a simple halo approach, and our
color selection criteria are not necessarily the same as theirs;
further careful study is needed to understand the origin of the
difference [after the present paper is accepted, Wang et al.
(2004) submitted a theoretical paper applying the halo model
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Fig. 13. Shape dependence of Qz of volume-limited samples of
galaxies with r < 17.5 and −21 < Mr − 5 log h < −20 (classified
according to their color).

to account for the 3PCFs of 2dF galaxies, in particular their
dependence on types and luminosity dependences, and show
the possibility that the halo model can match the observation].

4. Summary and Discussion

We have presented the first detailed study of the three-
point correlation function of SDSS galaxies in redshift space.
We examined the dependence of their reduced amplitudes,
Qz , [equation (3)] on the scale and shape of the triangles
for various volumed-limited samples with different morpholo-
gies, colors, and luminosities. As for equilateral triangles, we
basically confirm the hierarchical clustering relation for scales
of 1h−1 Mpc < s < 10h−1 Mpc. On the other hand, Qz shows
significant shape dependence, as expected from perturbation
theory and N -body simulations, particularly at large scale,
although the amplitude of Qz is much smaller than the expec-
tation.

The most important finding is that although the two-point
correlation functions of those galaxies show a clear dependence
on their luminosity, morphology, and color, we did not find any
robust dependence of Qz on those properties; the Qz results
when taken alone imply that galaxies are faithful tracers of the
underlying mass distribution, and that their intrinsic properties
are independent of the purely nonlinear gravitational evolu-
tion. At the same time, however, their two-point correlation
functions strongly indicate that they are biased tracers. If we
attempt to reconcile these two behaviors by using a simple
linear bias model, we cannot adjust it to simultaneously explain
both the two-point correlation functions and the insensitivity
of Qz on the galaxy properties. This implies that the galaxy
biasing is non-linear and fairly complex, while nonetheless
displaying a remarkable constancy in reduced amplitudes.

The above conclusion may appear to be inconsistent with the
argument of Verde et al. (2002), who concluded that the non-
linearity in 2dF galaxy biasing is negligible from the bispec-
trum analysis. We note, however, that they did not attempt to
divide those galaxies into different subsamples. If we look at
the results of all galaxies alone, top-panels of figures 7 and 10
may indicate the same conclusion as reached by Verde et al.
(2002). In other words, our empirical finding indicates that
the non-linearity of the biasing, b2, of galaxies vanishes when
the corresponding linear biasing parameter, b1, is unity. The
fact that the two parameters, b1 and b2, are highly correlated
with each other is qualitatively consistent with some biasing
model predictions including halo models or peak models (Mo
et al. 1997). It is remarkable that the current galaxy survey
approaches the level of discussing the validity of those models
quantitatively. Future SDSS datasets with more area and a
larger number of galaxies will be able to place stronger limits
on this observation. This in turn will be useful for a detailed
understanding of the nature of galaxy biasing.
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Appendix. Comparison of the Estimators of Two- and
Three-Point Correlation Functions

For an accurate determination of the normalized amplitudes
of Q, we need reliable estimators for the two- and three-point
correlation functions. For this purpose, we use a set of data
particles (ND = 643; generated from a N -body simulation with
2563 dark matter particles; Jing, Suto 1998) distributed in a
cube of Vbox = (100 h−1 Mpc)3. We then compare the following
three estimators for 2PCFs:

ξdirect =
DD

V12/Vbox
− 1, (direct); (A1)

ξH =
DD ·RR
[DR]2 − 1, (Hamilton 1993); (A2)

ξLS =
DD− 2DR + RR

RR
, (Landy, Szalay 1993); (A3)

where V12 denotes the volume of the spherical shell with the
thickness of the corresponding separation bin, and DD, DR,
and RR are the number of corresponding pairs of data and
random particles, and are normalized by ND(ND−1)/2, NDNR,
and NR(NR − 1)/2, respectively.

Similarly, we use the following estimators for the 3PCFs:

ζdirect =
DDD

V 2
123/V 2

box
− 3ξdirect − 1, (A4)

ζJB =
[RRR]2DDD

[DRR]3 − 3RRR ·DDR
[DRR]2 + 2, (A5)

ζSS =
DDD− 3DDR + 3DRR−RRR

RRR
. (A6)

The first uses the analytical expression for the effective volume
squared for the equilateral triplets. If one considers the size of
the equilateral triplets between rmin and rmax, it is simply given
by

V 2
123 = π2(r2

max − r2
min)3. (A7)

Because similar expressions in an arbitrary survey volume
shape are not available analytically, we focus on the equilateral
triplets in periodic cube of simulations. The latter two corre-
spond to estimators by Jing and Börner (1998) and Szapudi and
Szalay (1998), respectively. The combination of terms in Jing
and Börner (1998) comes from the fact that the first term corre-
sponds to 1 + ξ (r12) + ξ (r23) + ξ (r31) + ζ (r12,r23,r31), and the
second term to 3 + ξ (r12) + ξ (r23) + ξ (r31), yielding the desired
ζ mathematically.

The results of the convergence test are shown in figure 14
for 2PCFs and figure 15 for 3PCFs. These figures show the
ratios of the two different estimators with various NR against
the “direct” estimates [equations (A1) and (A4)] which do not
use the random particles. With this number of random parti-
cles, equations (A3) and (A6) reproduce the “direct” results
within ∼ 5% for 2PCFs and 3PCFs, respectively.

Figure 14 indicates that ξLS converges to the true value
(ξdirect) more rapidly even with a smaller NR than ξH (see also
Kerscher et al. 2000). Figure 15 shows that the estimators of
3PCFs are generally less stable compared with those of 2PCFs.
Still, ζSS seems better behaved than ζJB. Thus, we adopted ξLS
and ζSS in the present analysis.

Fig. 14. Comparison of the three estimators of 2PCFs with a different
number of random particles (NR). The small bars in the bottom
panel indicate the mean separation length of random particles for
different NR. Upper: the dependence of the Hamilton estimator on the
number of random particles. The long-dashed, short-dashed, and dotted
curves denote ξH(NR = 0.1× 106)/ξdirect, ξH(NR = 1× 106)/ξdirect and
ξH(NR = 10 × 106)/ξdirect, respectively. Lower: same as the upper
panel, but for the Landy–Szalay estimator.

Fig. 15. Same as figure 14, but for 3PCFs.
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